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Abstract—In this letter, we propose SHINE, a Symbol-based
Heuristic Iterative NB-LDPC codEd MIMO BP detection and de-
coding scheme. More specifically, we develop an NB-LDPC coded
iterative detection and decoding (IDD) receiver equiped with a
fine-tailored LLR interface between the real-domain detection
and the Galois-field decoding. To further reduce the complexity of
the IDD receiver, we propose a Joint Symbol Pruning Optimization
(JSPO) framework, leveraging metaheuristic learning to jointly
optimize the symbol search space in both detection and decoding.
Numerical results demonstrate that compared with its basic
version, SHINE succeeds in achieving up to 37.32% and 58.31%
complexity reduction for the detection and the decoding w/o
performance degradation. Numerical results also demonstrate the
performance merits of the proposed SHINE compared with other
NB-LDPC coded IDD counterparts.

Index Terms—iterative detection and decoding (IDD), belief
propagation (BP), NB-LDPC codes, multiple-input multiple-
output (MIMO), metaheuristic learning.

I. INTRODUCTION

RELIABILITY requirements in modern wireless commu-
nications have promoted extensive research on iterative

detection and decoding (IDD) receivers. These receivers out-
perform conventional separate detection and decoding (SDD)
methods by leveraging soft information exchange [1]. Operat-
ing in high-order Galois fields, non-binary low-density parity-
check (NB-LDPC) codes offer superior error-correction capa-
bility, cycle-breaking properties, and natural compatibility with
higher-order modulation over their binary counterparts [2].
However, implementing NB-LDPC coded IDD receivers re-
mains challenging due to their prohibitively high complexity
in both iterative processing and high-dimensional operations.

For detection, belief propagation (BP) detection offers an ef-
fective balance between performance and complexity in large-
scale MIMO systems. The transition to real-domain process-
ing [3] reduces computational complexity while maintaining
performance compared to complex-domain approaches [4].
For decoding, the extended min-sum (EMS) decoder [5] has
gained recognition for its efficient decoding performance with
low complexity. Notably, both algorithms share inherent BP-
based message-passing characteristics that can be exploited.

BP detectors are often integrated with binary decoders for
coded MIMO systems [6]. Recent approaches have leveraged
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machine learning techniques to maximize receiver perfor-
mance [7]. While successful in binary domains, NB-LDPC
decoders pose unique interface challenges due to the domain
mismatch between detection outputs and Galois field oper-
ations. Previous attempts [8] suffer from exhaustive symbol
enumeration and rely on complex-domain symbol processing,
making them impractical for large-scale MIMO. Recent im-
provement [9], though noteworthy, remains limited to small-
scale MIMO and SDD approaches. Motivated by the superior
error-correction capability of NB-LDPC codes and the ad-
vantages of iterative processing, while alleviating their heavy
computational load, we propose SHINE, a Symbol-based
Heuristic Iterative NB-LDPC codEd MIMO BP detection and
decoding scheme. The main contributions are listed as follows:

• Proposing SHINE receiver: The symbol-based heuristic
iterative receiver for NB-LDPC coded MIMO systems
is proposed. To the authors’ best knowledge, this is the
first complexity-affordable IDD receiver based on the BP
algorithm for NB-LDPC coded massive MIMO systems.

• Designing LLR interface: A fine-tailored symbol-level
LLR interface is designed to efficiently preserve reliabil-
ity information while enabling rapid convergence. Bene-
fiting from this interface, the proposed SHINE delivers up
to 0.6 dB performance gains over other NB-LDPC coded
IDD counterparts at FER of 10−3 in 32× 8 MIMO.

• Developing JSPO framework: A joint symbol pruning
optimization framework is developed, leveraging meta-
heuristic learning to optimize the symbol search space.
Numerical results demonstrate that SHINE with the JSPO
framework achieves substantial complexity reduction for
detection and decoding w/o performance penalization.

II. PRELIMINARIES

A. System Model

Assuming an uplink MIMO system with Nt transmit an-
tennas and Nr receive antennas, the received signal in real-
domain y ∈ R2Nr can be illustrated as

y = Hx+ n, (1)

where H ∈ R2Nr×2Nt represents the real-domain channel
matrix, with each element following Gaussian distribution
with zero mean and unitary variance. The transmitted symbol
vector x ∈ R2Nt consists of symbols selected from a real-
valued constellation

√
A, derived from the original complex

one with |A| = 2Q, where Q denotes the modulation order.
The noise vector n ∈ R2Nr follows ni ∼ N (0, σ2

n).
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B. Real-domain BP Detection

The BP detection achieves competitive performance in
large-scale MIMO systems by message passing on a factor
graph with factor nodes (FNs) and symbol nodes (SNs) [3].
Real-domain BP decomposes the complex constellation into
its real and imaginary components, which can potentially
reduce the computational complexity, especially for higher-
order modulations. The message sent from the i-th FN to the
j-th SN is computed as

βi,j(k) =
(ζi,j − hi,jµ1)

2

2ϑ2i,j
− (ζi,j − hi,jµk)

2

2ϑ2i,j
, (2)

where µk denotes the k-th constellation point in
√
A, and

ζi,j = yi −
∑2Nt

l=1,l ̸=j hi,ls̄l represents the interference-
cancelled received signal. The multiple-user interference
(MUI) is approximated by Gaussian distribution N (ξi,j , ϑ

2
i,j),

where the mean and variance are computed as: ξi,j =∑2Nt

l=1,l ̸=j hi,lÊ[sl], and ϑ2i,j =
∑2Nt

l=1,l ̸=j h
2
i,lV̂[sl] +σ2. The a

prior probability P(sj = µk) is updated following:

P(t)
j,i (sj = µk) ≈ N

[
exp

(
α
(t)
j,i (k)−max

m∈U
α
(t)
j,i (m)

)]
, (3)

where N[x] denotes the normalization operator, U denotes the
set of all possible symbol values in the constellation, and
αj,i(k) represents the message from the j-th SN to the i-th
FN: αj,i(k) =

∑2Nr

t=1,t̸=i βt,j(k). Once the maximum iteration
number is reached, the BP detector proceeds to calculate the
output of the j-th symbol: γj(k) =

∑2Nr

t=1 βt,j(k).

C. EMS Decoding

The EMS decoding algorithm has garnered widespread
recognition for its adept balance between computational com-
plexity and decoding efficiency for NB-LDPC codes [5].
Messages are conveyed in the form of LLRs between variable
nodes (VNs) and check nodes (CNs). Permutation nodes
serve as intermediaries for message relay over GF (q). Denote
{Vpv}v=1..dv

as the messages entering a VN and {Uvp}v=1..dv

as the output of this VN. The top nm elements from the
descendingly sorted q-dimensional LLR vector are assigned
to Uvp. A reduced subset is introduced:

Confidc (x) (ψm, ψc) =

{
αk ∈ Conf (ψm, ψc) :

hdc(x)idc(x) +

dc−1∑
c=1

α(kc)
c (x) = 0

}
,

(4)

where ψm and ψc retain only the most probable, meaning-
ful configurations to reduce complexity. Then the CNs with
the dc − 1 incoming Upc are updated following: Vdcp =
maxαk∈Sidc

(x)
{L (αk)}, where Sidc (x)

= Confidc (x) (q, 1)∪
Confidc (x) (ψm, ψc). Upon receiving {Vpv}v=1..dv

from CNs,
each VN is updated as: Utp = L +

∑dv

v=1,v ̸=t Vpv, t =
1, . . . , dv , where L is the message transmitted by the initial
channel.

III. PROPOSED SHINE RECEIVER

In this section, we present SHINE, an IDD receiver for NB-
LDPC coded MIMO systems, featuring an optimized Real-to-
Galois LLR interface and a metaheuristic-based JSPO frame-
work for efficient computation with negligible performance
degradation.

A. Optimized Real-to-Galois Domain IDD Architecture

In designing IDD receivers for NB-LDPC coded MIMO
systems, the primary challenge lies in the domain mismatch
between real-valued detection outputs and Galois field decod-
ing operations, which demands an efficient symbol-level LLR
interface. This interface must simultaneously preserve relia-
bility information to maximize error-correction performance
while ensuring rapid convergence to minimize computational
complexity—a balance particularly critical in high-order mod-
ulation and large-scale MIMO systems. To systematically
address this, we develop an cross-domain receiver architecture
that bridges the detection-decoding gap through carefully de-
signed message exchange mechanisms, as illustrated in Fig. 1.

Assuming the statistical independence of real and imaginary
parts and the additive contribution of each bit to the metric in
the exponential, we express the symbol reliability through bit-
wise a posteriori probability (APP) LLR for the k-th bit of
the i-th symbol as:

LA,i,k ≜ ln
P
(
xi,k = 0

∣∣y)
P
(
xi,k = 1

∣∣y)
= ln

∑
xℜ∈Xℜ

k,xi,k=0

exp
(
− 1

2σ2 ∥yℜ −Hℜxℜ∥2
)
P (xℜ)

∑
xℜ∈Xℜ

k,xi,k=1

exp
(
− 1

2σ2 ∥yℜ −Hℜxℜ∥2
)
P (xℜ)

+ ln

∑
xℑ∈Xℑ

k,xi,k=0

exp
(
− 1

2σ2 ∥yℑ −Hℑxℑ∥2
)
P (xℑ)

∑
xℑ∈Xℑ

k,xi,k=1

exp
(
− 1

2σ2 ∥yℑ −Hℑxℑ∥2
)
P (xℑ)

,

(5)

where (·)ℜ and (·)ℑ denote the real and imaginary parts,
respectively, Xℜ

k,xi,k
, Xℑ

k,xi,k
are the sets of real and imaginary

symbol vectors. Eq. (5) reveals that the total LLR LA,i,k can
be decomposed into real and imaginary components:

LA,i,k = ln
P (xℜi,k = 0|yℜ)

P (xℜi,k = 1|yℜ)
+ ln

P (xℑi,k = 0|yℑ)

P (xℑi,k = 1|yℑ)

= Lℜ
A,i,k + Lℑ

A,i,k. (6)

The decomposition enables efficient computation of LA,i,k

using real-domain outputs while preserving essential proba-
bilistic information for decoding.

Next, to map the aggregated LLRs to corresponding GF (q)
symbols required by the NB-LDPC decoder, a bijective symbol
mapping function ΨR→GF(q) is introduced, which translates
the real-valued LLR vector Li = [Li,1, . . . , Li,K ]⊤, where K
is the number of bits per symbol, into a symbol in GF (q):

si = ΨLLR→GF(q)(Li) = argmax
s∈GF(q)

K∑
k=1

(1− 2bs,k)Li,k, (7)
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Fig. 1. Architecture of the proposed SHINE receiver incorporating real-domain BP detection, EMS decoding, and symbol-based pruning optimization.

where bs,k is the k-th bit of the binary representation of symbol
s. This maximization selects the GF (q) symbol that is most
likely given the LLRs.

To manage extrinsic information exchange and ensure con-
vergence in the IDD process, we introduce a damped update
mechanism with interleaving:L

(t)
D→C = ϱ

(
L
(t)
A − I

{
L
(t−1)
C→D

})
+ (1− ϱ)L

(t−1)
D→C ,

L
(t)
C→D = ϱ

(
L
(t)
E − I−1

{
L
(t)
D→C

})
+ (1− ϱ)L

(t−1)
C→D.

(8)

Here, L
(t)
D→C and L

(t)
C→D are extrinsic LLRs passed be-

tween detector and decoder, L(t)
A and L

(t)
E are a posteriori

and extrinsic LLRs from detector and decoder respectively,
I{·} and I−1{·} are interleaving functions to decorrelate
information, and ϱ ∈ [0, 1] is a damping factor to mitigate
potential oscillations and accelerate convergence. This symbol-
level approach combined with the damped update mechanism
ensures both error-correction performance and convergence
efficiency in NB-LDPC coded MIMO systems.

B. Joint Heuristic Symbol Pruning for Complexity Reduction

Despite the superior performance of NB-LDPC coded IDD
receivers, the high-dimensional symbol space in GF (q) intro-
duces significant computational complexity. While the adop-
tion of real-domain symbol processing in detection partially
mitigates this issue, the overall IDD receiver remains com-
putationally intensive. Notably, both BP detection and EMS
decoding operate in the symbol domain, where the symbol
probability distributions exhibit sparsity. This sparsity can be
exploited to jointly reduce complexity by intelligently pruning
unlikely symbol candidates.

In this work, we propose a Joint Symbol Pruning Op-
timization (JSPO) framework that jointly optimizes symbol
pruning in both BP detection and EMS decoding. By adapting
the symbol search space based on probabilistic significance,
the JSPO effectively reduces computational complexity while
maintaining error performance.

1) Symbol Pruning in BP Detection: In BP detection, mes-
sages αj,i(k) are computed for all possible symbols µk ∈

√
A.

However, many of these symbols contribute negligibly due

to their low likelihood. To reduce complexity, we introduce
an adaptive pruning threshold nd to dynamically control the
symbol search space. Define the symbol index set for the j-th
SN as Kj = 1, 2, . . . , |

√
A|. We formulate the pruned symbol

subset K(nd)
j through a probabilistic ranking function R(·):

K(nd)
j = R

(
αj,i(k)k∈Kj

, nd

)
, (9)

where R(·) selects the nd symbols with the highest proba-
bilistic significance. The pruned a priori probability is then
approximated as

P(t)
j,i (sj = µk) ≈

{
N
[
exp

(
α
(t)
j,i (k)− Cj

)]
, k ∈ K(nd)

j

0, otherwise
(10)

where Cj = max
m∈K(nd)

j

α
(t)
j,i (m) ensures numerical stabil-

ity. By limiting the computation of βi,j(k) and subsequent
messages to symbols in K(nd)

j , we significantly reduce the
computational load while retaining the most probable symbol
candidates.

2) Symbol Pruning in EMS Decoding: In EMS decod-
ing, the computational complexity is also substantial due to
processing all q possible symbols at each VN and CN. We
introduce a pruning threshold nc, truncating the input LLR
vector γj(k) to retain only the top nc symbols with the highest
reliabilities for each VN. Let Γj = {γj(k)}qk=1 be the set of
LLRs for the j-th VN. arg top returns the indices with the nc

largest values. The pruned set Γ(nc)
j is defined as

Γ
(nc)
j = arg topk∈{1,2,...,q} {γj(k)}nc

. (11)

Only symbols within Γ
(nc)
j are considered in the VN and

CN updates, reducing complexity while focusing on the most
probable symbol candidates.

3) Collaborative Optimization Framework: Our proposed
JSPO, a customized evolutionary multi-objective optimization
approach, leverages metaheuristic learning to efficiently nav-
igate the discrete, non-linear optimization of symbol prun-
ing thresholds. It employs evolutionary operations—selection,
crossover, and mutation—to explore the solution space de-
spite the coupled effects between nd, nc, and stringent FER
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(a) N = 576, 32 × 8, R = 0.5 (b) N = 576, 32 × 8, R = 0.83 (c) N = 576, 128 × 32, R = 0.5 (d) N = 1200, 32 × 8, R = 0.5

LMMSE, 5GLDPC, SDD CBPN, SDD [9] SSNE CBPN, IDD SINE (5 IDD iter)
BP, 5GLDPC, IDD CBsPN, B(1, 1) [10], IDD SINE (2 IDD iter) SHINE (2 IDD iter)

Fig. 2. FER performance comparison of various code lengths, code rates and MIMO scenarios employing 64-QAM modulation, with GF (64).

constraints. Alternative approaches like simulated annealing
and particle swarm optimization prove suboptimal for this
problem due to slow convergence and inefficiency with dis-
crete variables. Tree search heuristics remain computationally
prohibitive given the combinatorial search space.

The optimization problem is formulated as:

min
nd,nc

J (nd, nc) = w · E[nd] + (1− w) · E[nc],

subject to FERχ(nd, nc) ≤ FERι + δFER,

nmin
d ≤ nd ≤ nmax

d , nmin
c ≤ nc ≤ nmax

c ,

(12)

where E[nd] and E[nc] are the expected symbol numbers after
pruning in detection and decoding, w ∈ [0, 1] is the weight
balancing their contributions, FERχ and FERι are the frame
error rates with and without pruning, respectively, and δFER is
a small tolerance (e.g., 1× 10−6). The parameters in Table I
are carefully chosen empirically, with ϱ and nc specifically
optimized via Monte Carlo simulations to balance exploration
and convergence. Our implementation employs SMS-EMOA
with SBX crossover and PM mutation operators, preserving
reproducibility through deterministic random seeding.

TABLE I
PARAMETERS OF THE JSPO FRAMEWORK

Parameter Value Parameter Value
FER Tolerance δFER 10−6 Damping Factor ϱ 0.7
Pruning Range for nd [3] [1, 8] Pruning Range for nc [5] [1, 40]
Population Size Np 100 Maximum Epoch Imax 2000
Mutation Prob PΞ 0.9 Crossover Prob PΥ 1.0
SBX Dist. Index Θ 15 PM Dist. Index Φ 20

IV. NUMERICAL RESULTS

We evaluate the error-correction performance and complex-
ity of SHINE’s across various code lengths, rates, and MIMO
configurations with 64-QAM modulation. SSNE (SDD-based)
and SINE (IDD-based) represent the versions of SHINE
without heuristic learning. Comparisons include an adapted
version of the complex-domain symbol-based BP detection

and decoding interface (CBPN) from [8], [9], replacing its
high-complexity BP detection algorithm with our complex-
domain BP to enable large-scale MIMO implementation. The
belief-selective propagation detector from [10] serves as an
additional benchmark (CBsPN). Binary LDPC codes following
5G NR standard ensure fair comparison. The weighting factor
w is set to the pre-learning detection-to-total complexity ratio
for balanced assessment. The JSPO framework is trained at
SNR points corresponding to FER of 10−2. Initial simulations
employ nmax

d = 8 and nmax
c = 40, with 3 internal BP detection

iterations and 4 EMS decoding iterations per IDD iteration.

A. Performance Analysis

Fig. 2 shows SHINE’s FER performance versus existing
receivers across diverse configurations, with case (d) following
BeiDou satellite standard [11]. Simulation results demonstrate
that two detection-decoding iterations suffice to achieve opti-
mal performance of the proposed IDD receiver, with additional
iterations yielding negligible improvements, confirming the
rapid convergence capability. Building upon this observation,
all IDD benchmark receivers are configured with two itera-
tions for fair comparison. CBPN’s performance in high-rate
scenarios is omitted due to severe error floor issues stemming
from its suboptimal handling of dense parity-check matrices.

For SDD, SSNE outperforms conventional approaches.
Compared to 5G LDPC-coded LMMSE, SSNE yields approx-
imately 1.5 dB gain at FER=10−3 for moderate configurations,
with a 1.0 dB advantage for longer codes. For IDD, SHINE
shows improvements over binary LDPC counterparts. SHINE
achieves around 1.0 dB gain over 5G LDPC-coded BP IDD
across different configurations, including the 128× 32 MIMO
system where the performance advantage remains consistent.
This performance gain stems from the inherent advantage
of NB-LDPC codes, their natural synergy with higher-order
modulations, and our efficient IDD architecture. Compared
to CBPN IDD, SHINE demonstrates superior performance
with 0.6-0.8 dB gain across various configurations, benefiting
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(a)
N = 576
R = 0.5

1 5 3 1 2 1 38 31 34 32 10 15 16 13

4.16 × 105−34.31% 1.46 × 105 −39.23%

Detection: nd ∈ [1, 8] Decoding: nc ∈ [1, 40] Overall (Detection + Decoding): # of NRMs

Iter. 1 Iter. 1Iter. 2 Iter. 2

5.62 × 105 6.38 × 105 7.95 × 105
6.75 × 106

— −11.91% −29.31% −91.67%

SHINE (this work) BP, 5GLDPC, IDD CBPN, IDD CBsPN, B(1,1), IDD

(b)
N = 576
R = 0.83

1 2 2 1 2 2 24 23 28 25 6 2 13 6

3.97 × 105−37.32% 1.66 × 105 −58.31%
reduction from BP / # of NRMs # of NRMs / reduction from EMS

5.63 × 105 6.38 × 105 9.52 × 105 6.91 × 106

— −11.76% −40.86% −91.85%
reduction using SHINE

Fig. 3. Complexity comparison for different MIMO-NBLDPC configurations corresponding to Fig. 2.

from real-domain processing and our optimized LLR interface.
Compared to CBsPN IDD, SHINE also exhibits consistent
performance advantages, stemming from our improved symbol
selection strategy that maximizes information propagation
while maintaining controlled complexity. Furthermore, SHINE
achieves nearly identical performance to SINE while substan-
tially reducing complexity by adaptively retaining significant
symbol candidates based on reliability metrics.

B. Complexity Reduction Analysis

The complexity analysis of SHINE in BP detection en-
compasses LMMSE initialization, βi,j(k) calculation, αj,i(k),
Pj,i, γj(k) update, and additionally introduces a prun-
ing step. For each of the three internal iterations within
one detection phase, SHINE requires O(4NrNt|

√
A| +

2NrNtnd) + O
(
N3

t

)
multiplications, O(4NrNt|

√
A| +

6NrNtnd)+O
(
N3

t

)
additions, O(2NrNtnd) exponentiations,

and O(2NrNt|
√
A| lognd) comparisons. In contrast, the real-

domain BP detection requires O(6NrNt|
√
A|) + O

(
N3

t

)
multiplications, O(10NrNt|

√
A|) + O

(
N3

t

)
additions, and

O(2NrNt|
√
A|) exponentiation. SHINE achieves substantial

complexity reduction, particularly in exponentiations and post-
pruning operations, where the complexity is reduced from
O(NrNt|

√
A|) to O(NrNtnd). For the decoder part, fol-

lowing the complexity analysis in [5], we evaluate the EMS
algorithm’s complexity in: variable node processing O(Ndvq),
check node processing O(Mdcncq), and configuration set
generation O(Mdc[q + (nc − 1) log q]), which are dominated
by addition operations. Since the computational overhead of
heuristic learning can be performed offline, and only addition-
level operations are introduced in online joint detection and
decoding, SHINE achieves significant complexity reduction
compared to SINE with minimal implementation overhead.

To provide a quantitative complexity comparison, we utilize
real-valued multiplications (NRMs) as the complexity met-
ric. Each complex multiplication involves 4 NRMs and 2
real additions, while each complex addition requires 2 real
additions. Following quantization, one exponential and real
addition equal to m and 1/k NRMs respectively, where m = 8
and k = 14 represent the bit width of addition and expo-
nentiation. As shown in Fig. 3, SHINE achieves substantial
complexity reduction through its probability-guided symbol
pruning, resulting in enhanced energy efficiency for resource-
constrained systems. The JSPO framework strategically prunes
the detection and decoding search spaces based on reliabil-
ity metrics, reducing computational burden while preserving
performance integrity. SHINE’s rapid convergence in just two
iterations further enhances its efficiency advantage over con-

ventional IDD approaches. Compared to other IDD receivers,
SHINE delivers complexity reductions (11.8%-91%) while
maintaining superior performance. These optimizations bring
SHINE’s computational requirements close to conventional
SDD approaches (8.5%-21.5% overhead) while delivering the
performance benefits of iterative processing. For increasing
antenna scales and modulation orders, SHINE’s complexity
reduction remains effective, while higher-order modulations
enable even more gains due to the natural isomorphism
between constellation points and GF elements.

V. CONCLUSION

We propose SHINE, a symbol-based heuristic iterative re-
ceiver for NB-LDPC coded MIMO systems. The optimized
Real-to-Galois LLR interface enables efficient probabilistic
information exchange. By designing the JSPO framework
through reliability-guided optimization, SHINE shows signif-
icant complexity reduction without performance degradation.
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